The parity-violating asymmetry A_{PV} in ^{208}Pb, recently measured by the PREX-2 Collaboration, is studied using modern relativistic (covariant) and nonrelativistic energy density functionals. We first assess the theoretical uncertainty on A_{PV} which is intrinsic to the adopted approach. To this end, we use quantified functionals that are able to accommodate our previous knowledge on nuclear observables such as binding energies, charge radii, and the dipole polarizability α_{D} of ^{208}Pb. We then add the quantified value of A_{PV} together with α_{D} to our calibration dataset to optimize new functionals. Based on these results, we predict a neutron skin thickness in ^{208}Pb r_{skin}=0.19±0.02 fm and the symmetry-energy slope L=54±8 MeV. These values are consistent with other estimates based on astrophysical data and are significantly lower than those recently reported using a particular set of relativistic energy density functionals. We also make a prediction for the A_{PV} value in ^{48}Ca that will be soon available from the CREX measurement.