Multiple sclerosis (MS) is a chronic neuroinflammatory disease that causes severe neurological dysfunction leading to disabilities in patients. The prevalence of the disease has been increasing gradually worldwide, and the specific etiology behind the disease is not yet fully understood. Therapies aimed against treating MS patients have been growing lately, intending to delay the disease progression and increase the patients' quality of life. Various pathways play crucial roles in developing the disease, and several therapeutic approaches have been tackling those pathways. However, these strategies have shown several side effects and inconsistent efficacy. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) have been shown to act as key players in various disease pathogenesis and development. Several proinflammatory and anti-inflammatory miRNAs have been reported to participate in the development of MS. Hence, the review assesses the role of miRNAs, lncRNAs, and circRNAs in regulating immune cell functions better to understand their impact on the molecular mechanics of MS.
Keywords: Autoimmunity; LncRNAs; MiRNAs; Multiple sclerosis; RNA interference.
© 2021 The Authors.