We report phase separation and liquid-crystal ordering induced by scalar activity in a system of soft repulsive spherocylinders (SRSs) of shape anisotropy L/D=5 using molecular dynamics (MD) simulations. Activity is introduced by increasing the temperature of half of the SRSs (labeled hot) while maintaining the temperature of the other half constant at a lower value (labeled cold). The difference between the two temperatures scaled by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases, we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles through a phase transition to a more ordered state and the hot particles to a state of less order compared to the initial equilibrium state. The cold components of a homogeneous isotropic structure acquire nematic and, at higher activity, crystalline order. Similarly, the cold zone of a nematic initial state undergoes smectic and crystal ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles occupy a larger volume and exert an extra kinetic pressure, confining, compressing, and provoking an ordering transition of the cold-particle domains.