Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease of childhood and is characterized by an often insidious onset and a chronic relapsing-remitting course, once diagnosed. With successive flares of joint inflammation, joint damage accrues, often associated with pain and functional disability. The progressive nature and potential for chronic damage and disability caused by JIA emphasizes the critical need for a prompt and accurate diagnosis. This article provides a review of recent studies related to diagnosis, monitoring and management of JIA and outlines recent novel tools and techniques (infrared thermal imaging, three-dimensional imaging, accelerometry, artificial neural networks and fuzzy logic) which have demonstrated potential value in assessment and monitoring of JIA. The emergence of novel techniques to assist clinicians' assessments for diagnosis and monitoring of JIA has demonstrated promise; however, further research is required to confirm their clinical utility.
Keywords: accelerometry; artificial intelligence; fuzzy logic; juvenile idiopathic arthritis; rheumatoid arthritis; thermal imaging.