Spatial configuration of charge and hydrophobicity tune particle transport through mucus

Biophys J. 2022 Jan 18;121(2):277-287. doi: 10.1016/j.bpj.2021.12.018. Epub 2021 Dec 21.

Abstract

Mucus is a selectively permeable hydrogel that protects wet epithelia from pathogen invasion and poses a barrier to drug delivery. Determining the parameters of a particle that promote or prevent passage through mucus is critical, as it will enable predictions about the mucosal passage of pathogens and inform the design of therapeutics. The effect of particle net charge and size on mucosal transport has been characterized using simple model particles; however, predictions of mucosal passage remain challenging. Here, we utilize rationally designed peptides to examine the integrated contributions of charge, hydrophobicity, and spatial configuration on mucosal transport. We find that net charge does not entirely predict transport. Specifically, for cationic peptides, the inclusion of hydrophobic residues and the position of charged and hydrophobic residues within the peptide impact mucosal transport. We have developed a simple model of mucosal transport that predicts how previously unexplored amino acid sequences achieve slow versus fast passage through mucus. This model may be used as a basis to predict transport behavior of natural peptide-based particles, such as antimicrobial peptides or viruses, and assist in the engineering of synthetic sequences with desired transport properties.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Hydrophobic and Hydrophilic Interactions
  • Mucus* / metabolism
  • Peptides* / chemistry

Substances

  • Peptides