Natural and human anthropogenic activities increase the concentration of the toxic pollutant in the water environment; they could cause harmful effects even in their lower concentration. In humans, toxic pollutants damage the structural and functional properties of essential organs including the heart, liver, kidneys, reproductive systems and pancreas. To avoid the toxicity of the pollutant, they should be removed from the water environment. Since various conventional water/wastewater treatment technologies including precipitation, ion exchange, flocculation, filtration, electrodialysis and membrane separation are employed to reduce the concentration of the pollutant, they have various difficulties in implementation, efficiency and ecological perspective. Therefore, several researchers are now focusing on alternative and eco-friendly approach called biosorption to remove toxic contaminants from the water environment. The biosorption innovation is one of the acclaimed systems for water treatment. The noteworthy endeavours have been made throughout the years to grow profoundly particular and effective biosorbent materials that are more effective, abundantly available, and cost-effective. Biosorption is effectively executed by utilizing both living and dead biomasses of bacteria, fungi and algae. Moreover, agro-waste materials are also utilized as biosorbents due to their excellent surface properties, abundant availability and cost-effectiveness. A variety of physical and chemical treatments enhances the biosorption capabilities of biosorbents via modifying their surface properties. In this review, biosorption mechanism, influencing parameters and application of biosorbent materials towards the removal of toxic pollutants are discussed. The future research opportunities for sustainable wastewater treatment were also explained.
Keywords: Biosorption; Biosrobent; Pollution sources; Toxic pollutants; Treatment methods; Water environment.
Copyright © 2021 Elsevier B.V. All rights reserved.