Stellacyanin (SC) is a type I (blue) copper protein, which plays a crucial role in plant growth and stress response. However, the comprehensive analysis and functional research of SCs in the woody plant is still lacking. Here, a total of 74 SCs were collected and identified from Arabidopsis, papaya, grape, rice and poplar. Bioinformatics was used to analyze the gene structure, protein structure and evolutionary relationship of 74 genes, especially 19 SCs in Populus trichocarpa. Based on the RNA-seq data, expression pattern of SCs in poplar under cold, high temperature, drought and salt stress were further analyzed. Subsequently, a key candidate gene PtSC18 that strongly responded to drought stress was screened. Subcellular localization experiment exhibited that PtSC18 was localized in the nucleus and plasma membrane. Overexpression of PtSC18 enhanced drought tolerance of transgenic Arabidopsis by improving water retention and reducing oxidative damage. Measurements of physiological indicators, including chlorophyll, H2O2, malondialdehyde content, peroxidase and catalase enzyme activities and electrical conductivity, all supported this conclusion. More importantly, PtSC18 enhanced the expression of some stress-related genes in transgenic Arabidopsis. Overall, our results lay a foundation for understanding the structure and function of PtSCs and provide useful gene resources for breeding through genetic engineering.
Keywords: Drought tolerance; Gene co-expression; PtSC18; Stellacyanins; Transcriptome.
Copyright © 2021 Elsevier B.V. All rights reserved.