Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.
Keywords: Cardiac function; Chagas disease; Immunorregulation; SOCS2; Trypanosoma cruzi.
Copyright © 2021 Elsevier Inc. All rights reserved.