Influence of mechanical operation on the biodelignification of Leucaena leucocephala by xylanase treatment

3 Biotech. 2022 Jan;12(1):20. doi: 10.1007/s13205-021-03024-y. Epub 2021 Dec 16.

Abstract

This study aimed at energy reduction during pulping of L. leucocephala by passing the wood chips through an impressafiner followed by xylanase pretreatment. An impressafiner compressed the chips and converted them into spongy materials. Wood chips of L. leucocephala with or without de-structuring and de-structured wood chips followed by enzymatic treatment were subjected to Kraft pulping at different temperatures varying from 135 to 170 °C and active alkali varying from 12 to 20% (as Na2O) to observe effect on screened pulp yield and kappa number. The de-structured wood chips followed by enzymatic treatment produced a pulp yield of 48.2% and kappa number 18.6. L. leucocephala without de-structuring produced a pulp yield of 50.1% and kappa number 23.7. When the pulp was subjected to oxygen delignification to reduce kappa number in the vicinity of 18.6, pulp showed shrinkage by 6.64% compared to Kraft pulp of de-structured wood chips followed by enzymatic treatment. Kraft pulp produced from de-structured wood chips of L. leucocephala followed by enzymatic treatment showed net saving of US$ 163.15 per digester over Kraft pulp produced without de-structuring of wood chips of L. leucocephala. Moreover, the pulp obtained by de-structuring followed by enzymatic treatment showed improvement in pulp brightness and physical strength properties including tensile, tear, and burst index significantly compared to pulp obtained without de-structuring.

Keywords: Bio-pulping; Impressafiner; Kraft pulping; Leucaena leucocephala; Mechanical pretreatment; Xylanase pretreatment.