A new quaternary telluride, Ba4Ge2Sb2Te10, was synthesized at high temperature via the reaction of elements. A single-crystal X-ray diffraction study shows that the title compound crystallizes in its own structure type in the monoclinic P21/c space group having cell dimensions of a = 13.984(3) Å, b = 13.472(3) Å, c = 13.569(3) Å, and β = 90.16(3)° with four formula units per unit cell (Z = 4). The pseudo-one-dimensional crystal structure of Ba4Ge2Sb2Te10 consists of infinite 1∞[Ge2Sb2Te10]8- stripes, which are separated by Ba2+ cations. Each of the Ge(1) atoms is covalently bonded to four Te atoms, whereas the Ge(2) atom is covalently bonded with one Sb(2) and three Te atoms in a distorted tetrahedral geometry. The title compound is the first example of a chalcogenide that shows Ge-Sb bonding. The Sb(1) atom is present at the center of the seesaw geometry of four Te atoms. In contrast, the Sb(2) atom forms a seesaw geometry by coordinating with one Ge(2) and three Te atoms. Condensation of these Ge and Sb centered polyhedral units lead to the formation of 1∞[Ge2Sb2Te10]8- stripes. The temperature-dependent resistivity study suggests the semimetallic/degenerate semiconducting nature of polycrystalline Ba4Ge2Sb2Te10. The positive sign of Seebeck coefficient values indicates that the predominant charge carriers are holes in Ba4Ge2Sb2Te10. An extremely low lattice thermal conductivity of ∼0.34 W/mK at 773 K was observed for polycrystalline Ba4Ge2Sb2Te10, which is presumably due to the lattice anharmonicity induced by the stereochemically active 5s2 lone pair of Sb. The electronic structure of Ba4Ge2Sb2Te10 and the bonding of atom pairs in the structure have been analyzed by means of ELF analysis and crystal orbital Hamilton population (COHP) analysis.