The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Keywords: Biosignatures. Astrobiology 22, 87–103; DNA; Extreme environment; Life detection; MinION; Nucleic acids.