Controlled fungicide delivery in response to the specific microenvironment produced by fungal pathogens is an advisable strategy to improve the efficacy of fungicides. Herein, the authors construct a smart fungicide nanoplatform, using mesoporous silica nanoparticles (MSNs) as nanocarriers loaded with eugenol (EU) and Ag+ coordinated polydopamine (Ag+ -PDA) as a coating to form Ag+ -PDA@MSNs-EU NPs for Botrytis cinerea (B. cinerea) control. As a botanical fungicide, EU offers an eco-friendly alternative to synthetic fungicides and can upregulate several defense-related genes in the tomato plant. The Ag+ -PDA coating can lock the EU inside the nanocarriers and respond to the oxalic acid produced by B. cinerea to corelease the loaded EU and Ag+ . The results demonstrate that Ag+ -PDA@MSNs-EU NPs can effectively inhibit the mycelial growth of B. cinerea on detached and potted tomato leaves. The construction of such a smart fungicide nanoplatform provides new guidance to design controlled fungicides release systems, which can respond to the microenvironment associated with plant pathogen to realize fungus control.
Keywords: drug delivery systems; functional nanosystems; smart materials; stimuli-responsiveness; supramolecular materials.
© 2022 Wiley-VCH GmbH.