Non-neutral plasma manipulation techniques in development of a high-capacity positron trap

Rev Sci Instrum. 2021 Dec 1;92(12):123504. doi: 10.1063/5.0067666.

Abstract

Preliminary experiments have been performed toward the development of a multi-cell Penning-Malmberg trap for the storage of large numbers of positrons (≥1010 e+). We introduce the master-cell test trap and the diagnostic tools for first experiments with electrons. The usage of a phosphor screen to measure the z-integrated plasma distribution and the number of confined particles is demonstrated, as well as the trap alignment to the magnetic field (B = 3.1 T) using the m = 1 diocotron mode. The plasma parameters and expansion are described along with the autoresonant excitation of the diocotron mode using rotating dipole fields and frequency chirped sinusoidal drive signals. We analyze the reproducibility of the excitation and use these findings to settle on the path for the next generation multi-cell test device.