The brain penetration of 19 drugs, including P-glycoprotein (P-gp) and/or breast cancer resistance protein (BCRP) substrates, was compared among mice, cynomolgus monkeys and beagle dogs. The brain-to-plasma concentration ratios (Kp,brain) of the tested compounds in monkey and dog showed good correlation, whereas species differences were observed between non-rodents (monkey/dog) and rodents (mouse). In particular, the Kp,brain values of 7 compounds out of 12 P-gp substrates (Kp,brain ratio in P-gp knockout mice versus wild-type mice ≥3) in monkey and dog were more than three-fold higher than those in mice and a similar trend was observed in the brain-to-plasma unbound concentration ratios (Kp,uu,brain). The cerebral spinal fluid (CSF) drug concentrations (CCSF), a surrogate for unbound brain concentration (Cu,brain), were also compared between dog and monkey, and the CSF-to-plasma unbound concentration ratios (Kp,uu,CSF) of BCRP substrates in dog were notably higher than those in monkey, although non-bcrp substrates showed good correlation. Also, the Kp,uu,CSF values of BCRP substrates in dog were clearly higher than the Kp,uu,brain values, indicating that the dog CCSF of BCRP substrates was not suitable as a surrogate of Cu,brain. These observations should be useful when selecting the appropriate animal models for CNS drug discovery.
Keywords: Blood-brain barrier; Blood-cerebrospinal fluid barrier; Breast cancer resistance protein; Central nervous system; Dog; Drug discovery; Knockout mice; Monkey; P-glycoprotein.
Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.