Solid-phase microextraction combined with gas chromatography/triple quadrupole tandem mass spectrometry for determination of nitrated polycyclic aromatic hydrocarbons in sediments

J Sep Sci. 2022 Mar;45(5):1094-1105. doi: 10.1002/jssc.202100644. Epub 2022 Jan 12.

Abstract

Nitro-polycyclic aromatic hydrocarbons have been detected in various environmental media. However, determination in sediment matrix is challenging due to the lack of a suitable method. In this study, a reliable method for determining 15 nitro-polycyclic aromatic hydrocarbons in sediments was developed based on accelerated solvent extraction and solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry. The accelerated solvent extraction and solid-phase microextraction are sample pre-treatment techniques that have advantages, such as rapid operation and minimal sample volume. Initially, the solid-phase microextraction was optimized using five commercial fibers and from that 65 μm polydimethylsiloxane/divinylbenzene fiber was selected as the best fiber. Further, the accelerated solvent extraction conditions were optimized by Taguchi experimental design, such as extraction temperature (120℃), extraction solvent (dichloromethane), number of cycles (two), static extraction period (4 min), and rinse volume (90%). The method parameters, such as limits of quantitation, and intraday and interday accuracy and precision, were in the range of 0.067-1.57 ng/g, 75.2-115.2%, 69.9-115.4%, and 1.0-16.5%, respectively. Upon meeting all the quality criteria, the method was applied successfully to analyze real sediment samples. Therefore, our study creates a new prospect for the future application of direct immersion solid-phase microextraction in sediment analysis.

Keywords: Taguchi experimental design; nitrated polycyclic aromatic hydrocarbons; sediment; solid-phase microextraction.