This study examines the effect of different behavioral conditions on patterns of correlation between regional cerebral metabolic rates for glucose. Cerebral glucose metabolism was determined with positron emission tomography and (11C)-deoxyglucose in 29 normal subjects between the ages of 23 and 55. Seventeen subjects were studied in an unstimulated (resting) condition and 12 subjects during a phoneme monitoring language stimulation. Partial correlation coefficients, controlling for whole brain glucose metabolism, were calculated for pairs of metabolic rates in 14 cortical and 2 subcortical regions. Both stimulated and unstimulated subjects showed statistically significant correlations between left and right hemisphere homologs. The stimulated subjects also showed significant within-hemisphere correlations between left but not right hemisphere regions. These included left perisylvian regions classically associated with language functions (left inferior frontal, left superior temporal and left transverse temporal cortical regions) as well as other regions. Significant correlations between left regions and a right superior temporal region were also found. In general, these findings show a pattern of cross-hemisphere symmetry at rest and of hemisphere asymmetry during stimulation. Moreover, the asymmetry observed during stimulation appears to be superimposed upon a pattern of cross-hemisphere symmetry similar to that observed in the unstimulated state.