All-in-one flexible supercapacitor with ultrastable performance under extreme load

Sci Adv. 2022 Jan 7;8(1):eabl8631. doi: 10.1126/sciadv.abl8631. Epub 2022 Jan 5.

Abstract

Fiber-type solid-state supercapacitors are being widely investigated as stable power supply for next-generation wearable and flexible electronics. Integrating both high charge storage capability and superior mechanical properties into one fiber is crucial to realize fiber-type solid-state supercapacitors. In this study, we design a “jeweled necklace”–like hybrid composite fiber comprising double-walled carbon nanotube yarn and metal-organic frameworks (MOFs). Subsequent heat treatment transforms MOFs into MOF-derived carbon (MDC), thereby maximizing energy storage capability while retaining the superior mechanical properties. The hybrid fibers with tunable properties, including thickness and MDC loading amount, exhibit a high energy density of 7.54 milliwatt-hour per cubic centimeter at a power density of 190.94 milliwatt per cubic centimeter. The mechanical robustness of the hybrid fibers allows them to operate under various mechanical deformation conditions. Furthermore, it is demonstrated that the resulting superstrong fiber delivers sufficient power to switch on light-emitting diodes by itself while suspending 10-kilogram weight.