Nanobody-Functionalized Cellulose for Capturing SARS-CoV-2

Appl Environ Microbiol. 2022 Mar 8;88(5):e0230321. doi: 10.1128/aem.02303-21. Epub 2022 Jan 5.

Abstract

The highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 253 million people, claiming ∼5.1 million lives to date. Although mandatory quarantines, lockdowns, and vaccinations help curb viral transmission, there is a pressing need for cost-effective systems to mitigate the viral spread. Here, we present a generic strategy for capturing SARS-CoV-2 through functionalized cellulose materials. Specifically, we developed a bifunctional fusion protein consisting of a cellulose-binding domain and a nanobody (Nb) targeting the receptor-binding domain of SARS-CoV-2. The immobilization of the fusion proteins on cellulose substrates enhanced the capture efficiency of Nbs against SARS-CoV-2 pseudoviruses of the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography with highly porous cellulose to capture viruses from complex fluids in a continuous fashion. By capturing and containing viruses through the Nb-functionalized cellulose, our work may find utilities in virus sampling and filtration through the development of paper-based diagnostics, environmental tracking of viral spread, and reducing the viral load from infected individuals. IMPORTANCE The ongoing efforts to address the COVID-19 pandemic center around the development of diagnostics, preventative measures, and therapeutic strategies. In comparison to existing work, we have provided a complementary strategy to capture SARS-CoV-2 by functionalized cellulose materials through paper-based diagnostics as well as virus filtration in perishable samples. Specifically, we developed a bifunctional fusion protein consisting of both a cellulose-binding domain and a nanobody specific for the receptor-binding domain of SARS-CoV-2. As a proof of concept, the fusion protein-coated cellulose substrates exhibited enhanced capture efficiency against SARS-CoV-2 pseudovirus of both the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography for binding viruses from complex biological fluids in a highly continuous and cost-effective manner. Such antigen-specific capture can potentially immobilize viruses of interest for viral detection and removal, which contrasts with the common size- or affinity-based filtration devices that bind a broad range of bacteria, viruses, fungi, and cytokines present in blood (https://clinicaltrials.gov/ct2/show/NCT04413955). Additionally, since our work focuses on capturing and concentrating viruses from surfaces and fluids as a means to improve detection, it can serve as an "add-on" technology to complement existing viral detection methods, many of which have been largely focusing on improving intrinsic sensitivities.

Keywords: COVID-19; SARS-CoV-2; cellulose; cellulose binding domain; cellulose binding protein; nanobody.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Cellulose
  • Communicable Disease Control
  • Humans
  • Pandemics
  • SARS-CoV-2* / genetics

Substances

  • Cellulose

Supplementary concepts

  • SARS-CoV-2 variants

Associated data

  • ClinicalTrials.gov/NCT04413955