Deficiency of vitamin D receptor in keratinocytes augments dermal fibrosis and inflammation in a mouse model of HOCl-induced scleroderma

Biochem Biophys Res Commun. 2022 Feb 5:591:1-6. doi: 10.1016/j.bbrc.2021.12.085. Epub 2021 Dec 26.

Abstract

Scleroderma, characterized by extensive fibrosis and vascular alterations, involves excessive fibroblast activation, uncontrolled inflammation, and abnormal collagen deposition. Previous studies showed that administrations of either 1,25(OH)2D3 or vitamin D analog effectively decreased or reversed skin fibrosis by regulating the extracellular matrix homeostasis. The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR), a transcription regulator crucial for skin homeostasis. Although evidence suggests that keratinocyte-fibroblast interaction influences the development of scleroderma, the role of keratinocytes in scleroderma remains unknown. Here, we demonstrated that the ablation of VDR in keratinocytes greatly exacerbated dermal fibrosis in HOCl-induced scleroderma in mice. The deficiency of VDR in the epidermis marked increased dermal thickness, inflammatory cell infiltration, and severe collagen deposition in comparison to the control group in HOCl-treated skin. Moreover, significant elevations in expression levels of mRNA for collagen overproduction (Col1A1, Col1A2, Col3A1, α-SMA, MMP9, TGF-β1) and proinflammatory cytokines (IL-1β, IL-6, CXCL1, CXCL2) were observed in VDR conditional KO versus control mice following HOCl treatment. Collectively, these results suggest that VDR in keratinocytes plays a pivotal role in scleroderma progression, and the interplay between keratinocytes and fibroblasts deserves more attention regarding the exploration of the pathogenesis and treatment for scleroderma.

Keywords: Dermis; Epidermis; Fibrosis; Inflammation; Scleroderma; Vitamin D receptor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Collagen / biosynthesis
  • Dermis / pathology*
  • Disease Models, Animal
  • Fibrosis
  • Hypochlorous Acid
  • Inflammation / genetics
  • Inflammation / pathology*
  • Keratinocytes / pathology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Receptors, Calcitriol / deficiency*
  • Receptors, Calcitriol / metabolism
  • Skin Diseases / genetics
  • Skin Diseases / pathology*
  • Up-Regulation / genetics

Substances

  • Receptors, Calcitriol
  • Hypochlorous Acid
  • Collagen