On-Demand Electrical Switching of Antibody-Antigen Binding on Surfaces

ACS Appl Bio Mater. 2018 Sep 17;1(3):738-747. doi: 10.1021/acsabm.8b00201. Epub 2018 Aug 13.

Abstract

The development of stimuli-responsive interfaces between synthetic materials and biological systems is providing the unprecedented ability to modulate biomolecular interactions for a diverse range of biotechnological and biomedical applications. Antibody-antigen binding interactions are at the heart of many biosensing platforms, but no attempts have been made yet to control antibody-antigen binding in an on-demand fashion. Herein, a molecular surface was designed and developed that utilizes an electric potential to drive a conformational change in surface bound peptide moiety, to give on-demand control over antigen-antibody interactions on sensor chips. The molecularly engineered surfaces allow for propagation of conformational changes from the molecular switching unit to a distal progesterone antigen, resulting in promotion (ON state) or inhibition (OFF state) of progesterone antibody binding. The approach presented here can be generally applicable to other antigen-antibody systems and meets the technological needs for in situ long-term assessment of biological processes and disease monitoring on-demand.

Keywords: antibody−antigen binding; on-demand binding; self-assembled monolayers; surface plasmon resonance; switchable surfaces.