Apigenin has gained interest recently among researchers as a potential chemotherapeutic agent in cancer, including colorectal cancer, due to its established antiproliferative activity in vitro. Despite its impressive anticancer activity in vitro, poor water solubility and nonspecific distribution in vivo make it difficult for its emergence as a drug candidate. To overcome these problems, we formulated an aptamer-conjugated apigenin-loaded nanoparticle (apt-ANP) to target against the overexpressed colorectal cancer cell surface biomarker epithelial cell adhesion molecule (EpCAM). Aptamer conjugation was conducted on the prepared nanoparticle, characterized (by SEM, TEM, and AFM) and evaluated for its antiproliferative activity toward in vitro colon carcinoma cells and in vivo colorectal cancer model. The aptamer-conjugated nanoformulation had an average size about 226 nm, smooth surface, satisfactory drug loading 17.5 ± 1.3%, and sustained drug-release pattern. The pharmacokinetic profile as well as the biodistribution study demonstrated a maximum retention of apt-ANP in the colon as compared to free drug and aptamer-free apigenin-loaded nanoparticle (ANP). Apt-ANP enhanced therapeutic efficacy to colorectal cancer cells, whereas it minimized off-target cytotoxicity to normal cells.
Keywords: EpCAM receptor; apigenin; aptamer; colorectal carcinoma; nanoformulated drug delivery; phosphorothioate modification.