With the widespread use of azole antifungals in the clinic, the drug resistance has been emerging continuously. In this work, we focus on boron trifluoride etherate catalyzed condensation of indole and salicylaldehydes to form bis(indolyl)methanes (BIMs) in high yields, and in vitro antifungal activity against Candida albicans were evaluated. The results showed that most phenol-derived BIMs combined with fluconazole (FLC) exhibited good antifungal activity against sensitive and drug-resistant C. albicans. Further mechanism study demonstrated that BI-10 combined with FLC could inhibit hyphal growth, result in ROS accumulation, and decrease mitochondrial membrane potential (MMP) as well as altering membrane permeability.
Keywords: Antifungal activity; BF(3)•Et(2)O catalyzed synthesis; Bis(indolyl)methanes; Mechanistic studies.
Copyright © 2022 Elsevier Ltd. All rights reserved.