Metal oxide charge transfer complex for effective energy band tailoring in multilayer optoelectronics

Nat Commun. 2022 Jan 10;13(1):75. doi: 10.1038/s41467-021-27652-3.

Abstract

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations. Here, we introduce a metal oxide charge transfer complex (NiO:MoO3-complex), which is composed of few-nm-size MoO3 domains embedded in NiO matrices, as a highly tunable carrier injection material. Charge transfer at the finely dispersed interfaces of NiO and MoO3 throughout the entire film enables effective energy level modulation over a wide work function range of 4.47 - 6.34 eV along with enhanced electrical conductivity. The high performance of NiO:MoO3-complex is confirmed by achieving 189% improved current efficiency compared to that of MoO3-based green OLEDs and also an external quantum efficiency of 17% when applied to blue OLEDs, which is superior to 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile-based conventional devices.