Direct mechanocatalysis (DM) describes solvent-free catalytic reactions that are initiated by mechanical forces in mechanochemical reactors such as ball mills. The distinctive feature of DM is that the milling materials, e.g. the milling balls themselves are the catalyst of the reaction. In this article we follow the historical evolution of this novel concept and give a guide to this emerging, powerful synthesis tool. Within this perspective we seek to highlight the impact of the relevant milling parameters, the nature of the catalyst and potential additives, the scope of reactions that are currently accessible by this method, and the thus far raised hypotheses on the underlying mechanisms of direct mechanochemical transformations.