Adult aging is associated with reductions in muscle function and standing balance control. However, whether sensorimotor function adapts to maintain upright posture in the presence of age-related muscle weakness is unclear. The purpose was to determine whether vestibular control of balance is altered in older compared to younger females and whether vestibular-evoked balance responses are related to muscle power. Eight young (22.6 ± 1.8 years) and eight older (69.7 ± 6.7 years) females stood quietly on a force plate, while subjected to random, continuous electrical vestibular stimulation (EVS; 0-20 Hz, root mean square amplitude: 1.13 mA). Medial gastrocnemius (MG) and tibialis anterior (TA) surface electromyography (EMG) and force plate anterior-posterior (AP) forces were sampled and associated with the EVS signal in the frequency and time domains. Knee extensor function was evaluated using a Biodex multi-joint dynamometer. The weaker, less powerful older females exhibited a 99 and 42% greater medium-latency peak amplitude for the TA and AP force (p < 0.05), respectively, but no other differences were detected for short- and medium-latency peak amplitudes. The TA (<10 Hz) and MG (<4 Hz) EVS-EMG coherence and EVS-AP force coherence (<2 Hz) was greater in older females than young. A strong correlation was detected for AP force medium-latency peak amplitude with center of pressure displacement variability (r = 0.75; p < 0.05) and TA medium-latency peak amplitude (r = 0.86; p < 0.05). Power was negatively correlated with AP force medium-latency peak amplitude (r = -0.47; p < 0.05). Taken together, an increased vestibular control of balance may compensate for an age-related reduction in power and accompanies greater postural instability in older females than young.
Keywords: Aging; Electromyography; Galvanic vestibular stimulation; Posture; Power.
Copyright © 2022 Elsevier Inc. All rights reserved.