Although the spread of plasmid-mediated antibiotic-resistant bacteria is a public health concern, food contamination with plasmid-mediated antibiotic-resistant Escherichia coli in Vietnam has not been well investigated. This study aimed to describe the prevalence of colistin-resistant, carbapenem-resistant, and endemic blaCTX-M in extended-spectrum β-lactamase (ESBL) producing E. coli isolates. Colistin and carbapenem-resistant ESBL-producing E. coli were isolated from chickens in Vietnam and Japan. Colistin-resistant and AmpC/ESBL-producing E. coli (52% and 93%, respectively) were detected in chickens from Vietnam, in comparison to 52.7%, AmpC/ESBL-producing E. coli found in chicken from Japan. Carbapenem-resistant E. coli has not been isolated in Vietnam and Japan. Genotyping revealed that colistin-resistant E. coli harboured mcr-1, and most of the AmpC/ESBL-related genes were blaCTX-M-55 and blaCTX-M-65 together with blaTEM in Vietnamese chickens and blaCMY-2 in Japanese chickens. Multi-drug resistance analysis showed that ESBL-producing E. coli isolates had greater resistance to quinolones, streptomycin, and chloramphenicol than colistin-resistant E. coli isolates from Vietnam, suggesting the selection of multiple antibiotic resistance genes in ESBL-producing E. coli. In conclusion, colistin-resistant E. coli was detected in approximately half of the chicken samples, the majority of which harboured mcr-1. The high prevalence of ESBL-producing E. coli has remained constant in the last 5 years. The predominant blaCTX-M in ESBL-producing E. coli was blaCTX-M-55 or blaCTX-M-65, with the coexistence of blaTEM in Vietnam. These results can be implemented in monitoring systems to overcome the development of antimicrobial resistance.
Keywords: Bla CMY-2; Bla CTX-M-55; Bla CTX-M-65; Bla TEM; Mcr-1; Plasmid-mediated antibiotic-resistant Escherichia coli.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.