Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting

J Colloid Interface Sci. 2022 May:613:349-358. doi: 10.1016/j.jcis.2022.01.044. Epub 2022 Jan 10.

Abstract

Developing high-efficiency and earth-abundant electrocatalysts for electrochemical seawater-splitting is of great significance but remains a grand challenge due to the presence of high-concentration chloride. This work presents the synthesis of a three-dimensional core-shell nanostructure with an amorphous and crystalline NiFe-layered double hydroxide (NiFe-LDH) layer on sulfur-modified nickel molybdate nanorods supported by porous Ni foam (S-NiMoO4@NiFe-LDH/NF) through hydrothermal and electrodeposition. Benefiting from high intrinsic activity, plentiful active sites, and accelerated electron transfer, S-NiMoO4@NiFe-LDH/NF displays an outstanding bifunctional catalytic activity toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both simulated alkaline seawater and natural seawater electrolytes. To reach a current density of 100 mA cm-2, this catalyst only requires overpotentials of 273 and 315 mV for OER and 170 and 220 mV for HER in 1 M KOH + 0.5 M NaCl freshwater and 1 M KOH + seawater electrolytes, respectively. Using S-NiMoO4@NiFe-LDH as both anode and cathode, the electrolyzer shows superb overall seawater-splitting activity, and respectively needs low voltages of 1.68 and 1.73 V to achieve a current density of 100 mA cm-2 in simulated alkaline seawater and alkaline natural seawater electrolytes with good Cl- resistance and satisfactory durability. The electrolyzer outperforms the benchmark IrO2||Pt/C pair and many other reported bifunctional catalysts and exhibits great potential for realistic seawater electrolysis.

Keywords: Core–shell nanostructure; Hydrogen evolution reaction; NiFe-layered double hydroxide; Oxygen evolution reaction; Seawater-splitting; Sulfur-modified NiMoO(4) nanorods.