Microelectrode technology is essential in electrophysiology and has made contributions to neuroscience as well as to medical applications. However, it is necessary to minimize tissue damage associated with needle-like electrode on the brain tissue and the implantation surgery, which makes stable chronic recording impossible. Here, we report on an approach for using a 5 μm-diameter needle electrode, which enables the following of tissue motions, via a surgical method. The electrode is placed on the brain tissue of a mouse with a dissolvable material, reducing the physical stress to the tissue; this is followed by the implantation of the electrode device in the brain without fixing it to the cranium, achieving a floating electrode architecture on the tissue. The electrode shows stable recording with no significant degradation of the signal-to-noise ratios for 6 months, and minimized tissue damage is confirmed compared to that when using a cranium-fixed electrode with the same needle geometry.