MYC oncogene is involved in the majority of human cancers and is often associated with poor outcomes, rendering it an extraordinarily desirable target, but therapeutic targeting of c-Myc protein has been a challenge for >30 years. Here, WBC100, a novel oral active molecule glue that selectively degrades c-Myc protein over other proteins and potently kills c-Myc overexpressing cancer cells is reported. WBC100 targets the nuclear localization signal 1 (NLS1)-Basic-nuclear localization signal 2 (NLS2) region of c-Myc and induces c-Myc protein degradation through ubiquitin E3 ligase CHIP mediated 26S proteasome pathway, leading to apoptosis of cancer cells. In vivo, WBC100 potently regresses multiple lethal c-Myc overexpressing tumors such as acute myeloid leukemia, pancreatic, and gastric cancers with good tolerability in multiple xenograft mouse models. Identification of the NLS1-Basic-NLS2 region as a druggable pocket for targeting the "undruggable" c-Myc protein and that single-agent WBC100 potently regresses c-Myc overexpressing tumors through selective c-Myc proteolysis opens new perspectives for pharmacologically intervening c-Myc in human cancers.
Keywords: WBC100; c-Myc oncoprotein; cancer; proteolysis targeting molecule; targeted therapy.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.