Assessment of the Transfer of Trace Metals to Spontaneous Plants on Abandoned Pyrrhotite Mine: Potential Application for Phytostabilization of Phosphate Wastes

Plants (Basel). 2022 Jan 11;11(2):179. doi: 10.3390/plants11020179.

Abstract

The abandoned Kettara pyrrhotite mine (Marrakech region, Morocco) is a real source of acid mine drainage (AMD) and heavy metal pollution from previous mining operations-which has spread, particularly because of wind erosion. A store-and-release cover system made of phosphate wastes was built on the site for preventing AMD. To ensure the integrity of this cover and its durability, it is desirable to revegetate it (phytostabilization) with plants adapted to the edaphoclimatic conditions of the region. In this paper, a study was carried out on the spontaneous vegetation around the phosphate cover in order to consider the selection of plants to promote the stabilization of the Kettara mine tailings pond. Nine species of native plants with their rhizospheric soils growing in agricultural soils and tailings from the Kettara mine were collected, and metals (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) were analyzed. The soil analysis showed that the tailings contained high concentrations of Cu (177.64 mg/kg) and Pb (116.80 mg/kg) and that the agricultural soil contained high concentrations of As (25.07 mg/kg) and Cu (251.96 mg/kg) exceeding the toxicity level (Cu > 100 mg/kg, Pb > 100 mg/kg, As > 20 mg/kg). The plant analysis showed low trace metal accumulation in Scolymus hispanicus, Festuca ovina, Cleome brachycarpa, Carlina involucrata and Peganum harmala. These species had a bioconcentration factor (BCF) greater than 1 and a translocation factor (TF) less than 1, demonstrating a high tolerance to trace metals. Therefore, they are good candidates for use in the phytoremediation of the Kettara mine tailings. These species could also potentially be used for the phytostabilization of the phosphate waste cover of the Kettara mine, thus completing the rehabilitation process of this area.

Keywords: accumulation; metals; mine; phosphate; phytoremediation; phytostabilization; plants; soils.