Effects of Tylosin, a Direct-Fed Microbial and Feedlot Pen Environment on Phenotypic Resistance among Enterococci Isolated from Beef Cattle Feces

Antibiotics (Basel). 2022 Jan 14;11(1):106. doi: 10.3390/antibiotics11010106.

Abstract

In two sequential replicates (n = 90 and n = 96 feedlot finisher cattle, respectively) we measured the impact of an Enterococcus faecium-based probiotic (DFM) and an altered feedlot pen environment on antimicrobial resistance among fecal enterococci in cattle fed (or, not fed) the macrolide tylosin. Diluted fecal samples were spiral-plated on plain and antibiotic-supplemented m-Enterococcus agar. In the first replicate, tylosin significantly (p < 0.05) increased the relative quantity of erythromycin-resistant enterococci. This effect was diminished in cattle fed the DFM in conjunction with tylosin, indicating a macrolide susceptible probiotic may help mitigate resistance. A similar observed effect was not statistically significant (p > 0.05) in the second replicate. Isolates were speciated and resistance phenotypes were obtained for E. faecium and E. hirae. Susceptible strains of bacteria fed as DFM may prove useful for mitigating the selective effects of antibiotic use; however, the longer-term sustainability of such an approach remains unclear.

Keywords: Enterococcus faecium; antimicrobial resistance; environmental change; probiotic.