Background and objective: Atrial septal defect (ASD) is a common congenital heart disease. During embryonic development, abnormal atrial septal development leads to pores between the left and right atria. ASD accounts for the largest proportion of congenital heart disease. Therefore, the design and implementation of an ASD intelligent auxiliary segmentation system based on deep learning segmentation of the atria has very important practical significance, which we aim to achieve in this paper.
Methods: This study proposes a multi-scale dilated convolution module, which is composed of three parallel dilated convolutions with different expansion coefficients. The original FCN network usually adopts bilinear interpolation or deconvolution methods when upsampling, both of which lead to information loss to a certain extent. In order to make up for the loss of information, it is expected that the final segmentation result can be directly connected to the deep features in the cardiac MRI. This study uses a dense upsampling convolution module, and in order to obtain the shallow position information, the original FCN jump connection module is still retained. In this research, a deep convolutional neural network for multi-scale feature extraction is designed through the multi-scale expansion convolution module. At the same time, this paper also implements two traditional machine learning segmentation methods (K-means and Watershed algorithms) and a deep learning algorithm (U-net) for comparison.
Results: The intelligent auxiliary segmentation algorithm for atrial images proposed in this framework based on multi-scale expansion convolution and adversarial learning can achieve superior results. Among them, the segmentation algorithm based on multi-scale expansion convolution can extract the associated features of pixels in multiple ranges, and can obtain deeper feature information when using a limited downsampling layer. According to the experimental results of the multi-scale expanded convolutional network on the data set, the Proportion of Greater Contour (PGC) index of the multi-scale expanded convolutional network is 98.78, the value of Average Perpendicular Distance (ADP) is 1.72mm, and the value of Overlapping Dice Metric (ODM) is 0.935, which are higher than other models.
Conclusion: The experimental results show that compared with other segmentation models, the model based on multi-scale expansion convolution has significantly improved the accuracy of segmentation. Our technique will be able to assist in the segmentation of ASD, evaluation of the extent of the defect and enhance surgical planning via atrial septal occlusion.
Keywords: Atrial Septal Defect; Cardiac MRI; Fully connected network; K-means segmentation; Multi-scale Dilated Convolution; Watershed segmentation.
Copyright © 2022 Elsevier B.V. All rights reserved.