Dual pH-/Photo-Responsive Color Switching Systems for Dynamic Rewritable Paper

ACS Appl Mater Interfaces. 2022 Feb 2;14(4):5825-5833. doi: 10.1021/acsami.1c22306. Epub 2022 Jan 23.

Abstract

Smart color switching materials that can change color with a fast response and a high reversibility have attracted increasing attention in color-on-demand applications. However, most of them can only respond to a single stimulus from their external environment, which dramatically limits their broad applications. To address this problem, we report a new strategy in developing a dual pH-/photo-responsive color switching system by coupling the pH-dependent and redox-driven color switchable neutral red (NR) with photoreductive TiO2-x nanoparticles. The biodegradable TiO2-x nanoparticles/NR/agarose gel film shows a rapid color switching between yellow and red upon stimulation with acidic/basic vapors in more than 20 cycles because of the protonation and deprotonation process of NR. Moreover, the film shows interesting photoreversible color switching properties under both acidic and basic conditions, including a fast response time and a high reversibility. Taking advantage of the excellent dual pH-/photo-responsive color switching properties, we demonstrated the potential applications of the TiO2-x nanoparticles/NR/agarose gel film in dynamic rewritable paper, in which the created patterns by photo-printing produce dynamic color changing upon applying an acidic or a basic vapor. We believe that the result will enable a new path for the development of dual- and even multi-responsive color switching systems, broadening their new applications.

Keywords: TiO2–x nanoparticles; color switching system; dual pH-/photo-response; redox dyes; rewritable paper.