Liquiritin Alleviates Depression-Like Behavior in CUMS Mice by Inhibiting Oxidative Stress and NLRP3 Inflammasome in Hippocampus

Evid Based Complement Alternat Med. 2022 Jan 11:2022:7558825. doi: 10.1155/2022/7558825. eCollection 2022.

Abstract

Objective: Central inflammation is generally accepted to be involved in the pathology of depression. We investigated whether liquiritin exerts antidepressant effects by inhibiting central NLRP3 inflammasomes.

Results: The behavioral despair model and chronic unpredictable mild stress (CUMS) model in mice were established to evaluate the antidepressant action of liquiritin. In the despair model study, liquiritin (40 mg/kg) administration reduced immobility time in tail suspension test (TST) and forced swimming test (FST) without affecting locomotion activity. In CUMS model study, liquiritin (40 mg/kg, once daily for 4 weeks) significantly increased sucrose consumption and body weight of CUMS mice. The behavioral experiment results showed that liquiritin reduced the immobile time of CUMS mice in TST and FST, respectively, and increased the time spent and open arm entries in the elevated plus-maze (EPM) test. Further, the hippocampal superoxide dismutase (SOD) activity was increased in liquiritin-treated group, while malonaldehyde (MDA) decreased. Additionally, the hippocampal cytokines interleukin-18 (IL-18) and interleukin-1 beta (IL-1β) contents were reduced in the liquiritin-treated group. Further, liquiritin downregulated the expression of NLRP3 in the hippocampus of CUMS mice rather than TLR4. Besides, NLRP3 inflammasome-associated proteins caspase-1 and ASC were also downregulated. However, liquiritin did not alter the thermal stability of NLRP3 in the cellular thermal shift assay (CETSA), suggesting that its inhibition of NLPR3 was not by direct targeting of NLRP3 protein.

Conclusions: Liquiritin attenuates depression-like behavior of CUMS mice and inhibited cytokines levels triggered by NLRP3 inflammasome, suggesting the antidepressant action is, at least partially, associated with antioxidant stress and inhibition of NLRP3 inflammasome activation.