Sugarcane cultivars manipulate rhizosphere bacterial communities' structure and composition of agriculturally important keystone taxa

3 Biotech. 2022 Jan;12(1):32. doi: 10.1007/s13205-021-03091-1. Epub 2022 Jan 3.

Abstract

Different sugarcane cultivars are grown to produce renewable energy and sugar in China. However, we have a limited awareness of the interactive influence of varying sugarcane cultivars on rhizosphere bacterial structure and diversity. Assessing cultivar choice impact on soil bacterial communities is vital since bacterial taxa are frequently impacted by planting performance. Employing high-throughput Illumina sequencing, we examined bacterial communities' assemblage in the rhizosphere of six Chinese sugarcane cultivars (Regan14-62, Guitang 08-120, Haizhe 22, Guitang 08-1180, Taitang 22 and Liucheng 05-136). Our results indicated that different sugarcane cultivars have no significant influence on the Shannon index; however, their impact on richness was substantial. There was a difference in the bacterial community structure that is also associated with a change in the community composition, as determined by the DESeq2 results, suggesting that "Haizhe 22 (HZ22)" had a completely different beta diversity as compared to other five cultivars by enriching abundance of Firmicutes, Proteobacteria, Gemmatimonadetes, Saccharibacteria and Bacteroidetes and reducing the quantity of Actinobacteria, Chloroflexi, Acidobacteria, and Planctomycetes, respectively. The HZ22 rhizosphere significantly enriched six genera (e.g., Devosia, Mizugakiibacter, Mycobacterium, Nakamurella, Rhizomicrobium, and Virgibacillus) relative to other varieties, suggesting an important role in plant disease tolerance and growth development, including soil nutrient cycling and bioremediation. Analysis of similarity (ANOSIM) and correlation analysis revealed that cultivars, soil organic matter, pH and soil moisture were central factors influencing bacterial composition. These findings may help in selection of plant cultivars capable of supporting highly abundant specific beneficial microbial groups, improving plant disease resistance, growth stimulation, and soil bioremediation capabilities, further leading to improvements in breeding strategies.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-021-03091-1.

Keywords: Bacterial interactions; Breeding stratagies; Pyrosequencing; Rhizosphere communities; Sugarcane cultivars.

Associated data

  • Dryad/10.5061/dryad.4m66m9999r