Enzymes offer interesting features as biological catalysts for industry: high specificity, activity under mild conditions, accessibility, and environmental friendliness. Being able to produce enzymes in large quantities and having them available in a stable and reusable form reduces the production costs of any enzyme-based process. Agricultural residues have recently demonstrated their potential as substrates to produce ligninolytic enzymes by different white rot fungi. In this study, the biotechnological production of a manganese peroxidase (MnP) by Irpex lacteus was conducted through solid-state fermentation (SSF) with wheat straw as substrate and submerged fermentation (SmF) employing wheat straw extract (WSE). The obtained enzyme cocktail also showed manganese-independent activity (MiP), related to the presence of a short MnP and a dye-decolorizing peroxidase (DyP) which was confirmed by shotgun proteomic analyses. In view of the enhanced production of ligninolytic enzymes in SmF, different parameters such as WSE concentration and nitrogen source were evaluated. The highest enzyme titers were obtained with a medium formulated with glucose and peptone (339 U/L MnP and 15 U/L MiP). The scale-up to a 30 L reactor achieved similar activities, demonstrating the feasibility of enzyme production from the residual substrate at different production scales. Degradation of five emerging pollutants was performed to demonstrate the high oxidative capacity of the enzyme. Complete removal of hormones and bisphenol A was achieved in less than 1 h, whereas almost 30% degradation of carbamazepine was achieved in 24 h, which is a significant improvement compared to previous enzymatic treatments of this compound. KEY POINTS: • Wheat straw extract is suitable for the growth of I. lacteus. • The enzyme cocktail obtained allows the degradation of emerging contaminants. • Mn-dependent and Mn-independent activities increases the catalytic potential.
Keywords: Emerging contaminants; Enzymatic oxidation; Irpex lacteus; Manganese peroxidase; Wheat straw.
© 2022. The Author(s).