Heterogeneous Bimetallic Organic Coordination Polymer-Derived Co/Fe@NC Bifunctional Catalysts for Rechargeable Li-O2 Batteries

ACS Appl Mater Interfaces. 2022 Feb 2;14(4):5459-5467. doi: 10.1021/acsami.1c22643. Epub 2022 Jan 25.

Abstract

The Li-O2 battery has attracted substantial attention due to its high theoretical energy density. In particular, high-efficiency oxygen catalysts are very important for the design of practical Li-O2 batteries. Herein, we have synthesized heterogeneous crystalline-coated partially crystalline bimetallic organic coordination polymers (PC@C-BMOCPs), which are further pyrolyzed to obtain Co- and Fe-based nanoparticles embedded within rodlike N-doped carbon (Co/Fe@NC) as a bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalyst used in the Li-O2 battery. Owing to excellent ORR/OER catalytic ability, the Co/Fe@NC bifunctional catalyst exhibits an efficient reversible reaction between O2 and Li2O2. Additionally, a large number of mesoporous channels are present in the core-shell Co/Fe@NC nanoparticles. These channels not only promote the diffusion of Li+ and O2, but also create ample room to store insoluble discharge product Li2O2. The Li-O2 batteries utilizing the bifunctional Co/Fe@NC oxygen electrode exhibit a large capacity of 17,326 mAh g-1, a long cycling life of more than 250 cycles, and excellent reversibility. This work provides a universally applicable strategy for designing nonnoble metal ORR/OER catalysts with excellent electrochemical performance for metal-air batteries.

Keywords: Li−O2 battery; MOCPs; bifunctional catalyst; dual metal sites; nitrogen-doped carbon.