The outcome of different host-pathogen interactions is influenced by both genetic and epigenetic systems, which determine the response of plants to pathogens and vice versa. This review highlights key molecular mechanisms and conceptual advances involved in epigenetic research and the progress made in epigenetics of wheat-rust interactions. Epigenetics implies the heritable changes in the way of gene expression as a consequence of the modification of DNA bases, histone proteins, and/or non-coding-RNA biogenesis without disturbing the underlying nucleotide sequence. The changes occurring between DNA and its surrounding chromatin without altering its DNA sequence and leading to significant changes in the genome of any organism are called epigenetic changes. Epigenetics has already been used successfully to explain the mechanism of human pathogens and in the identification of pathogen-induced modifications within various host plants. Wheat rusts are one of the most vital fungal diseases throughout the major wheat-growing areas of the world. The epigenome in plant pathogens causing diseases such as wheat rusts is mysterious. The investigations of host and pathogen epigenetics in the wheat rusts system can offer a piece of suitable evidence for elucidation of the molecular basis of host-pathogen interaction. Besides, the information on the epigenetic regulation of the genes involved in resistance or pathogenicity will provide better insights into the complex resistance signaling pathways and could provide answers to certain key questions, such as whether epigenetic regulation of certain genes is imparting resistance to host in response of certain pathogen elicitors or not. In the last few years, there has been an upsurge in research on the host as well as pathogen epigenetics and its outcome in plant-pathogen interactions. This review summarizes the progress made in the areas related to the epigenetic control of host-pathogen interaction with particular emphasis on wheat rusts.
Keywords: Bisulfite sequencing; Chromatin immunoprecipitation; DNA methylation; Epigenetics; Histone modification; Rust; Wheat.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.