Correlated States of 2D Electrons near the Landau Level Filling ν=1/7

Phys Rev Lett. 2022 Jan 14;128(2):026802. doi: 10.1103/PhysRevLett.128.026802.

Abstract

The ground state of two-dimensional electron systems (2DESs) at low Landau level filling factors (ν≲1/6) has long been a topic of interest and controversy in condensed matter. Following the recent breakthrough in the quality of ultrahigh-mobility GaAs 2DESs, we revisit this problem experimentally and investigate the impact of reduced disorder. In a GaAs 2DES sample with density n=6.1×10^{10}/cm^{2} and mobility μ=25×10^{6} cm^{2}/V s, we find a deep minimum in the longitudinal magnetoresistance (R_{xx}) at ν=1/7 when T≃104 mK. There is also a clear sign of a developing minimum in R_{xx} at ν=2/13. While insulating phases are still predominant when ν≲1/6, these minima strongly suggest the existence of fractional quantum Hall states at filling factors that comply with the Jain sequence ν=p/(2mp±1) even in the very low Landau level filling limit. The magnetic-field-dependent activation energies deduced from the relation R_{xx}∝e^{E_{A}/2kT} corroborate this view and imply the presence of pinned Wigner solid states when ν≠p/(2mp±1). Similar results are seen in another sample with a lower density, further generalizing our observations.