Background: Diabetes mellitus is one of the most notable health dilemmas. Analyzing plants for new antidiabetic remedies has become an impressive territory for life science researchers. Gynura procumbens has long been used to treat diabetes. Thus, we strived to ascertain the hypoglycemic potentiality of extract of leaves of G. procumbens by in vivo and in silico approaches.
Methods: Fresh leaves of G. procumbens were collected and shade-dried to prepare ethanolic extracts to evaluate pharmacological parameters. Diabetes was induced in rats via injecting alloxan through the intraperitoneal route at a dose of 150 mg/kg body weight. Humalyzer 3000 was used to perform a biochemical assay of collected samples from rats. Anti-hyperglycemic activity study along with overdose toxicity test was performed. The pharmacological activity of this plant was also evaluated through a molecular docking study. This in silico study investigated the binding affinity of natural ligands from G. procumbens against glycoside hydrolase enzymes.
Results: We detected a peak plasma concentration of G. procumbens at 3 hours 45 minutes that is roughly similar to the peak plasma concentration of metformin. Again, in OGTT and anti-hyperglycemic tests, it has been ascertained that both plant extract and metformin can exert significant (P < 0.05) and highly significant (P < 0.01) hypoglycemic activity in a dose-dependent manner. Metformin exhibited better therapeutic efficacy than that of plant extract, but it possessed null statistical significance. Also, our safety profile expressed that, similar to metformin, the plant extract can restore the disturbed pathological state in a dose-oriented approach with a wide safety margin. In silico study also validated the potentialities of natural constituents of G. procumbens. Conclusion. This study suggested that G. procumbens can be considered as potential antidiabetic plant. Robust and meticulous investigation regarding plant chemistry and pharmacology in the future may bring about a new dimension that will aid in discovering antidiabetic drugs from this plant in the diabetes management system.
Copyright © 2022 Md. Rafat Tahsin et al.