Simulation-Based Optimization of a Multiple Gas Feed Sweetening Process

ACS Omega. 2022 Jan 13;7(3):2690-2705. doi: 10.1021/acsomega.1c05193. eCollection 2022 Jan 25.

Abstract

For an energy-intensive sweetening process, it is common that sour gases from different sources are sent to a single sweetening plant in industries. In our previous work, a multiple gas feed sweetening process was proposed, which can simultaneously improve the purity of H2S and reduce the energy consumption of the plant. This study aims to develop the superstructure of that process and use a simulation-based optimization framework with Aspen HYSYS as the process simulator and particle swarm optimization algorithm as the optimizer. In addition, by taking full advantage of the robustness of the built-in algorithm of the simulator, the convergence of the model is improved; meanwhile, simplification of the process and reduction of the optimization time are accessible with the proposed design specifications and assumptions. For a convergence-difficult column, a stepwise convergence adjustment was used to ensure their convergence. Based on this, the robustness and effectiveness of the method is proven through a case study, and it can also provide guidance for model selection, process simplification, and optimization of the same type of absorption process.