A mixed-model procedure for analysis of censored data assuming a multivariate normal distribution is described. A Bayesian framework is adopted which allows for estimation of fixed effects and variance components and prediction of random effects when records are left-censored. The procedure can be extended to right- and two-tailed censoring. The model employed is a generalized linear model, and the estimation equations resemble those arising in analysis of multivariate normal or categorical data with threshold models. Estimates of variance components are obtained using expressions similar to those employed in the EM algorithm for restricted maximum likelihood (REML) estimation under normality.