Angiogenesis, the formation of new vessel elements from existing vessels, is important in homeostasis and tissue repair. Dysfunctional angiogenesis can contribute to numerous pathologies, including cancer, ischemia, and chronic wounds. In many instances, growing vessels must navigate along or across tissue-associated boundaries and interfaces tissue interfaces. To understand this dynamic, we developed a new model for studying angiogenesis at tissue interfaces utilizing intact microvessel fragments isolated from adipose tissue. Isolated microvessels retain their native structural and cellular complexity. When embedded in a 3D matrix, microvessels, sprout, grow, and connect to form a neovasculature. Here, we discuss and describe methodology for one application of our microvessel-based angiogenesis model, studying neovessel behavior at tissue interfaces.
Keywords: Angiogenesis; Interface; Microvessel; Neovessel; Vascularization.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.