Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution in animal models. In humans, however, current approaches restrict recordings to a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here we describe a new probe variant and set of techniques that enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes. We characterized a diversity of extracellular waveforms with eight separable single-unit classes, with differing firing rates, locations along the length of the electrode array, waveform spatial spread and modulation by LFP events such as inter-ictal discharges and burst suppression. Although some challenges remain in creating a turnkey recording system, high-density silicon arrays provide a path for studying human-specific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.