Compounds exhibiting main group elements in low oxidation states were found to mimic the reactivity of transition metal complexes. Like the latter, such main group species show a proclivity of changing their oxidation state as well as their coordination number by +2, therefore fulfilling the requirements for oxidative additions. Prominent examples of such main group compounds that undergo oxidative additions with organohalides R-X (R=alkyl, aryl, X=F, Cl, Br, I) are carbenes and their higher congeners. Aluminyl anions, which like carbenes and silylenes oxidatively add to strong σ-bonds in R-X species, have been recently discovered. We present the first anion based upon a Group 14 element, namely the tris(pentafluoroethyl)silanide anion, [Si(C2 F5 )3 ]- , which is capable of oxidative additions towards C-F bonds. This enables the isolation of non-chelated tetraorganofluorosilicate salts, which to the best of our knowledge had only been observed as reactive intermediates before.
Keywords: Fluorine; Oxidative Addition; Perfluorosilicates; Silanide Anion; Silicon.
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.