Background: Several studies show that autophagy plays an important part in the biological processes of lung adenocarcinoma. Therefore, this work aimed to establish one scoring system on the basis of the expression profiles of differentially expressed autophagy-related genes (DEARGs) in patients with lung adenocarcinoma.
Methods: The Cancer Genome Atlas (TCGA) was applied to retrieve lung adenocarcinoma data. The overall survival (OS)-associated DEARGs were selected for the DEARG scoring scale. Moreover, the online database Kaplan-Meier Plotter (www.Kmplot.com) was employed to verify the accuracy of our results.
Results: The expression patterns of DEARG were detected in lung adenocarcinoma as well as normal lung tissues. A gene set related to autophagy was identified, along with 9 genes that showed marked significance in predicting the lung adenocarcinoma prognosis. According to the cox regression results, DEARGs (including ITGB4, BIRC5, ERO1A, and NLRC4) were applied to calculate the DEARGs risk score. Patients with lower DEARGs risk scores were associated with better OS. Moreover, based on analysis with the receiver operating characteristic (ROC) curve, DEARGs accurately distinguished the healthy tissues from lung adenocarcinoma tissues [area under the curve (AUC) value of >0.6].
Conclusions: A scoring system is constructed based on the primary DEARGs, which accurately predicts the outcomes of lung adenocarcinoma.
Keywords: Lung adenocarcinoma; autophagy; scoring system.
2020 Translational Cancer Research. All rights reserved.