Exploiting genetic variability in the trajectory of lactation yield and somatic cell score with each progressing parity

J Dairy Sci. 2022 Apr;105(4):3341-3354. doi: 10.3168/jds.2021-21306. Epub 2022 Feb 3.

Abstract

The inclusion of reproductive performance in dairy cow breeding schemes has resulted in a cumulative improvement in genetic merit for reproductive performance; this improvement should manifest in longer productive lives through a reduced requirement for involuntary culling. Nonetheless, the average length of dairy cow productive life has not changed in most populations, suggesting that risk factors for culling, especially in older cows, are possibly more associated with lower yield or high somatic cell score (SCS) than compromised reproductive performance. The objective of the present study was to understand the dynamics of lactation yields and SCS in dairy cows across parities and, in doing so, quantify the potential to alter this trajectory through breeding. After edits, 3,470,520 305-d milk, fat, and protein yields, as well as milk fat and protein percentage and somatic cell count records from 1,162,473 dairy cows were available for analysis. Random regression animal models were used to identify the parity in which individual cows reached their maximum lactation yields, and highest average milk composition and SCS; also estimated from these models were the (co)variance components for yield, composition, and SCS per parity across parities. Estimated breeding values for all traits per parity were calculated for cows reaching ≥fifth parity. Of the cows included in the analyses, 91.0%, 92.2%, and 83.4% reached maximum milk, fat, and protein yield in fifth parity, respectively. Conversely, 95.9% of cows reached their highest average fat percentage in first parity and 62.9% of cows reached their highest average protein percentage in third parity. In contrast to both milk yield and composition traits, 98.4% of cows reached their highest average SCS in eighth parity. Individual parity estimates of heritability for milk yield traits, milk composition, and SCS ranged from 0.28 to 0.44, 0.47 to 0.69, and 0.13 to 0.23, respectively. The strength of the genetic correlations per trait among parities was inversely related to the interval between the parities compared; the weakest genetic correlation was 0.67 (standard error = 0.02) between milk yield in parities 1 and 8. Eigenvalues and eigenfunctions of the additive genetic covariance matrices for all investigated traits revealed potential to alter the trajectory of parity profiles for milk yield, milk composition, and SCS. This was further demonstrated when evaluating the trajectories of animal estimated breeding values per parity.

Keywords: maturity; milk; somatic cell score; trajectory.

MeSH terms

  • Animals
  • Cattle / genetics
  • Cell Count / veterinary
  • Female
  • Lactation* / genetics
  • Milk* / metabolism
  • Parity
  • Phenotype
  • Pregnancy