Over 65% of the world's cattle population resides in warm areas where heat stress conditions limit the breed of European taurine cattle. Composite breeds were developed to retain the main traits of both parental breeds. The skin plays a central role in animal response to heat stress. Research on the genetic architecture of skin traits has identified genes and regions related to warm resistance skin features. The aim of this study was to determine whether the indicine proportion accounted for coat type or whether there were genes of large effect segregating in Brangus. Bulls (n = 108) were genotyped using microarrays and their coat score and hair length were evaluated. Indicine-taurine genome-wide composition was estimated and GWAS was performed. Although significant correlations between indicine proportion and traits were not observed, four windows of SNPs on BTA4 and BTA5 explained more than 2% of the trait variance. The GWAS for coat score in summer showed the main peak on BTA5:46,941,446-48,030,219 bp, accounting for 4.65% of the variance. Our results suggest that the variation in coat score and undercoat hair length in Argentinian Brangus bulls is associated with the presence of some particular gene variants, rather than with the whole indicine genetic content.
Keywords: Brangus; GWAS; breed composition; hair length; skin type; tropical adaptation.