Comparative transcriptomics analysis of testicular miRNA from indicine and taurine cattle

Anim Biotechnol. 2023 Nov;34(4):1436-1446. doi: 10.1080/10495398.2022.2029466. Epub 2022 Feb 7.

Abstract

Numerous studies have shown that several microRNAs (miRNAs) are specifically expressed in testis, play an essential role in regulating testicular spermatogenesis. Hainan and Mongolian cattle are two representative Chinese native cattle breeds representing Bos indicus (indicine cattle) and Bos taurus (taurine cattle), respectively, which are distributed in hot Hainan and cold Inner Mongolia province. To study the functional differences of miRNA in spermatogenesis between indicine and taurine cattle, six mature testes samples from indicine cattle (n = 3) and taurine cattle (n = 3) were collected, respectively. We detected miRNA expression using small RNA sequencing technology following bioinformatic analysis. A total of 578 known miRNAs and 132 novel miRNAs were detected in the six libraries. Among the 710 miRNAs, 564 miRNAs were expressed in both indicine and taurine cattle, 73 miRNAs were found solely in indicine cattle and 73 miRNAs were found solely in taurine cattle. After further analysis, among the miRNAs were identified in both indicine and taurine cattle, 184 miRNAs were differentially expressed (|log2 fold change| ≥ 1 and corrected p-value <0.05). Among the miRNAs that were only expressed in indicine cattle, 10 miRNAs were differentially expressed, whereas, among the miRNAs that were only expressed in taurine cattle, six miRNAs were differentially expressed. The enrichment analysis result showed that predicted target genes of a total of 200 differentially expressed miRNAs were enriched on some testicular spermatogenesis-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathway. These findings identify miRNAs as key factors to regulate spermatogenesis in both indicine and taurine cattle, which may also be helpful for improving cattle reproductive performance in future studies.

Keywords: Cattle; expression profiles; miRNA; spermatogenesis.

MeSH terms

  • Animals
  • Cattle / genetics
  • Gene Expression Profiling / veterinary
  • Male
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Spermatogenesis / genetics
  • Testis* / metabolism
  • Transcriptome

Substances

  • MicroRNAs