Exposure to fine particulate matter (PM2.5) during pregnancy has been linked to the risk of gestational diabetes mellitus (GDM), while conclusions are inconsistent. In this study we aimed to estimate the effects of prenatal PM2.5 exposure with blood glucose in early pregnancy and the GDM risk. Participants were recruited from the SH-IPMCH-BTH cohort (n = 41,929), a study of air pollution and birth outcome. All participants provided serum samples for analyses of fasting blood glucose (FBG) and HbA1c during early pregnancy. GDM was diagnosed using an oral glucose tolerance test (OGTT) with the time interval of 1 h. Prenatal exposure to PM2.5 was estimated using gap-filled satellite exposure assessments in Shanghai, China. Both FBG and HbA1c levels were significantly and positively associated with PM2.5 exposure during early pregnancy. A 10 μg/m3 increase of PM2.5 exposure from early to middle pregnancy was associated with the risk of GDM (first trimester OR=1.09, 95% CI: 1.02, 1.16; second trimester OR=1.09, 95% CI: 1.03, 1.16; first two trimester OR=1.15, 95%CI: 1.04, 1.28). The combined effects were greater among elevated FBG and HbA1c women with higher PM2.5 exposure in middle trimester (P for interaction=0.037 and 0.001, respectively). This study found that exposure to PM2.5 exposure in the 1st and 2nd trimesters was related to GDM. FBG and HbA1c played roles in the relationship between PM2.5 exposure in the 2nd trimester and GDM.
Keywords: Blood glucose; Fine particulate matter; Gestational diabetes mellitus; HbA1c.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.